Given : SM is parallel to CR
To Prove: RM = PT
Construction: Join OS

Proof:

As B, F, E, C are cyclic, $\angle A B E=\angle A C F=\alpha$
As A, R, P, C are cyclic, $\angle A C R=\angle A P R=\alpha$
As A, F, E, C are cyclic, $\angle A B Q=\angle A P Q=\alpha$
From (1), (2) \& (3), $\angle A B Q=\angle A C R=\angle A P R=\angle A P Q=\alpha$
Let, $\angle P A C=\beta \Rightarrow \angle P R C=\beta$ (Same Segment Angles)

Here, we use a well known property of orthocenter, OD = DP
In $\triangle O D S \& \triangle P D S$,
OD = DP (from (4))
$\angle D=\angle D=90^{\circ}$
DS = DS (Common Side)
$\triangle O D S \cong \triangle P D S$ (SAS Congruency)
$\mathrm{PS}=\mathrm{SO}$
In $\triangle P D S \& \triangle P D T$,
$\angle D=\angle D=90^{\circ}$
DP = DP (Common Side)
$\angle D P S=\angle D P T$ (proved)
$\triangle P D S \cong \triangle P D T$ (ASA Congruency)
$\mathrm{PS}=\mathrm{PT}$
From (5) \& (6)
$\mathrm{PT}=\mathrm{OS}$
Now, In $\triangle O S P$, as OS $=\mathrm{SP}$
$\Rightarrow \angle S O P=\angle S P O=\alpha \quad$ [Base angles of Iss. $\triangle l e$]
In $\triangle A E O$, as $\angle A=\beta \Rightarrow \angle A O E=90-\beta$
$\Rightarrow \angle B O D=90-\beta$ [V.O.A]
In $\triangle F B O$, as $\angle B=\alpha \Rightarrow \angle F O B=90-\alpha$
$\therefore \angle R O S=90-\alpha+90-\beta=180-\beta$ implies $\angle O S M=\beta$
According to angle sum property of Quadrilateral, In ROSM, $\angle R M S=180-\beta$
In the quadrilateral ROSM
$\angle R+\angle O=\beta+180-\beta$
Which means one pair \& adjacent angles are supplementary and
RO|| SM [As SM || CR] \& opposite angles are equal.
\Rightarrow ROSM is a parallelogram
And OS = RM and they are parallel
But OS=PT [Proved from (7)]
$\therefore \mathrm{RM}=\mathrm{PT}$

